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Review



Review

- Types of probabilities:

P(X,Y) joint
P(Y|X) conditional
P(X) unconditional (or marginal)

- Useful rules:

P(A,B,C,...) = P(A)P(BJA)P(CIA,B)... productrule
P(X|Y) = P(YX)P(X)/P(Y) Bayes rule
PX) = D PX,Y=Y) marginalization
y

- Conditioning on background evidence F:

P(A,B,C,...|[F) = P(A|F)P(BIA,E)P(CIA,B,E)...
PX|Y,E) = P(Y|X,E)P(X|E)/P(Y|E)
PIXIE) = D P(X,Y=Y|F)

y
4/26



Marginal and conditional independence

- Marginal independence

P(XlY) = P(X) Each of these
P(YIX) = P(Y) implies the
P(X,Y) = P(X)P(Y) other two.

- Conditional independence

P(X|Y,E) = P(X|E) Each of these
P(Y|X,E) = P(Y|E) also implies the
P(X,Y|E) = P(X|E)P(Y|E) other two.
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Example of conditional dependence

- B and E are marginally independent:
P(B) = P(BIE)
P(E) = P(E[B)
P(B,E) = P(B)P(E)

- But B and E are conditionally dependent given A:
P(BJA) # P(B|E,A)
P(EIA) # P(E[B,A)
P(B,E|A) # P(BIA)P(EIA)
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Joint Distributions and Inference



Why Joints Matter

The joint distribution P(X,...,X,) is a complete description of
uncertainty.

~

From the full joint distribution P(Xs, ..., Xp), what kinds of
probabilities can we compute?

A. Only marginals, P(X;)
B. Only conditionals, P(X;|X;)

C. Any marginal or conditional over the variables

D. None of the above

Inference: Compute the posterior distribution of query
variables given observed evidence.
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- Model complexity

Suppose X; € {0,1} are binary random variables.

How many numbers do we need to specify the joint
distribution of P(X1=X1,...,Xnp=xpn)?

A. O(n)
2M)

B. O(
C. 0(n?)
D. O(logn)

.

It requires numbers to specify the joint distribution
P(X’] :X’l, N ,Xn:Xn).
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Conceptual and Practical Goals

[ Representation ]

[ Inference ] [ Learning ]

- Representation: compactly encode the joint.

- Inference: answer queries given evidence.

- Learning: estimate structure/parameters from data.

10/26



Alarm Example




Alarm example

- Binary random variables

B e {0,1}
Ee{0,1}
A€ {0,1}
J € {0,1}
M e {0,1}

Was there a burglary?
Was there an earthquake?
Was the alarm triggered?
Did Jamal call?

Did Maya call?
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Joint distribution

- Product rule
P(B,E,A,J,M)

= P(B)P(E|B)P(A|B,E)P(J|B,E,A) P(M|B, E,A,))

’ Note: the above is true no matter what the variables signify. ‘

- Domain-specific assumptions

P(E|B) = P(E) marginal independence
P(J|B,E,A) = P(J|A) conditional independence
P(M|B,E,A,]) = P(M|A)  conditional independence
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Completing the model

- Joint distribution
P(B, E,A,J, /\/l)
= P(B)P(E|B) P(A|B,E) P(J|B, E,A) P(M|B, E,A, )

= P(B) P(E) P(A[B,E) P(J|A) P(M|A)

- Conditional probability tables (CPTs)

P(B=1) = 0.001 B | E | P(A=1]B,E) A PU=TIA)

0o 0.001 0.05

1 09

P(E=1) = 0.002 110 0.94

01 0.29 T
11 095 (M=1]A)

0.01

1 0.7
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Inference

- Joint probabilities are easy to compute:
P(B=1,E=0,A=1,J=1,M=1)
= P(B=1)P(E=0)P(A=1|B=1,E=0) PJ=1|A=1T)P(M=1]A=1)
= (0.00T)(1 — 0.002)(0.94)(0.9)(0.7)
- Any inference can be expressed in terms of joint probabilities:

P(B=1,E=0|M=1)

P(B=1,E=0,M=1
= W product rule
>a, P(B=1E=0,A=0a,/=j,M=1) —
Dobrer oy P(B=b E=€/ A=0a",]=]/,M=1)

But this approach can be very inefficient! ‘
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Efficient inference

How to perform inference most efficiently?
1. Visualize models as directed acyclic graphs.

2. Exploit graph structure to organize and simplify
calculations.

We'll spend today on (1) and next lecture on (2).
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Visualizing the model

- Joint distribution

P(B,E,A,J, M)
= P(B) P(E|B) P(A[B, E) PUIB, E,A) P(MIB, £, A, )

= P(B)P(E) P(A|B,E) P(J|A) P(MIA)
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Alarm belief network

P(B=1) = 0.001 P(E=1) = 0.002
\ ﬁ P(A=1[B, E)

0 0 0.001
1]0 0.94
0 1 0.29
1)1 0.95

A [ PU=1]A) A | P(M=1[A)

0 0.05 0 0.01

1 0.9 1 07

This visual representation of the joint distribution is
called a belief network (or a Bayesian network, or a
probabilistic graphical model).
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Belief networks




A belief network (BN) is a directed acyclic graph (DAG) in which:
1. Nodes represent random variables.
2. Edges represent dependencies.

3. Conditional probability tables (CPTs) describe how each
node depends on its parents. . e

o
’ BN = DAG + CPTS‘ PA=11B. )

0.001
094
029

095

[ATPU=1A)"] [ATPM=1]A) |
0.05 0 0.01
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From distributions to graphs

- It is always true from the product rule that

P, Xa, - Xa) = P(Xq) POlX) ... P(XnlXa, ... Xn—1)

n

[TPeaxs X, Xi)

=1

- But suppose in a particular domain that
P(Xi[X1, X2, .., Xizq) = P(Xj|parents(X;)),

where parents(X;) is a subset of {X1,...,X;_1}.

- Big idea: represent conditional dependencies by a DAG.

21/26



Constructing a belief network

Three steps:

1. Choose your random variables of interest.

2. Choose an ordering of these variables (e.g, Xi, X2, ..., Xs).

3. While there are variables left:

(a) add the node X; to the network

(b) setthe parents of X; to be the minimal subset satisfying

n
P(X1, X, ..., Xn) = [] P(Xilparents(X;)),
i=1

(c) define the conditional probability table P(X;|parents(X;))
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- Best ordering:

Add the “root causes,” then the variables they influence,
then the next variables that are influenced, etc.

- Example:

In the alarm world, a natural ordering is (B, E,A,J, M).
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Node ordering

- What happens if we choose an unnatural ordering?

Ex: (M,),A,E, B)

- Adding nodes with this ordering:

P(M,J,A,E,B)
= P(M)P(IM)P(A|, M) P(E|A, ), M) P(BIE,A, ], M)
= P(M)P(J|M)P(A|J,M)P(E|A) P(B|A,E)

ovo This belief network has two extra edges.
This DAG does not show P(B) = P(BIE).
° This DAG does not show P(M|A) = P(M|A,)).
This belief network has larger CPTs.

9 ° These CPTs may be more difficult to assess.
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Advantages of belief networks

1. Compact representation of complex models

BNs provide a complete but parsimonious representation
of joint probability distributions.

2. Crisp separation of qualitative vs quantitative knowledge

Qualitative

Quantitative

DAGs encode assumptions of marginal
and conditional independence.

CPTs encode numerical influences
of some variables on others.
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That's all folks!
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